
FIECMU/SEI-W8TR-5
L(

ESD-TR-88-006

Carn(gie-Mellon University

- Software Engineering ri jl,.

introduction to the Serpent
User Interface Management SvEA'

Len Bass
* 0/ Erik Hardy~Kurt Hoyt

/ M. Red i ttle, Jr.

Robert Seacord

" -,March 1988

IDTrC
/ ELECTE.

"'. //

NOV 01

ALI/ /
/ /

4 / //

/ / 'V

IDISTRBUTION OYAIMEbr
/\

/

Dixt&YAlm Unl.,td \ 1Q9

SSCIJRITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
14L REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-5 ESD-TR-88-006

Ga. NAME OF PERFORMING ORGANIZATION sb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(I f Applicablel

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE
Ec. ADORESS (City. State and ZIP Code) " 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

HANCOM_ MA n117
S.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (i applicable I

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clasification) 63752F W/A N/A

Introduction to the Serpent User Interface hanagement Sy tems

12. PERSONAL AUTHOR(S)
Len Bass, Erik Hardy, Kurt Hoyt, M. Reed Little. Jr., Robert Seacord

13.. TYPE OF REPORT J 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 16. PAGE COUNT

'FTNAT. FROM _ TO March 1988
16. SUPPLEMENTARY NOTATION

COSATICOOI'S 18 SUBJECT TERMS (Continue on reverse if necessary and identdfy by block number)
FIELD GROUP SUB. GR. dialogue managers uims

display design user interface
, /"prototyping systems x toolkit

19. ABSTRACT (C*Iinue on verse if necessary and identify by block number)" O s- Sepn~ an example of the class of systems known as User Interface Management System
(UIMS). T" uses the X window system to interact with the end user, and is useful both
as a portion of a production system and as a separate prototyping tool. Serpent supports
the development and execution of the user interface of a system. It provides an editor
with which to specify the user interface and a run-time system which communicates with
the application to get the data to display. The system then uses the specification
previously output from the editor to decide how to display that data. This report
provides a technical overview of Serpent, its components, the module used in specifying
the user interface, and the editor used in constructing the user interface. C.)

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED k) SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED, UNLIMITED DISTRIBUTION

22aL NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL H. SHINGLER O.ctude Area Code j
1412 268-7630 SEI JPO

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.
SECURITY CLASSIFICATION OF THIS PAGE

Technical Report
CMU/SEI-M8TR-5

ESD-TIR-88-00
March 1988

Introduction to the Serpent
User Interface Management System

Len Bass
Erik Hardy
Kurt Hoyt

M. Reed Little, Jr.
Robert Seacord

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

II

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

SEI Joint Program Office

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel. DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering.

please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161

p!

Table of Contents
1. Serpent Overview 1
2. Roles Involved In the Use of Serpent 1

2.1. Data Flow 3
2.2. Control Flow 4

3. Example 4
3.1. Serpent Functionality 6

4. Serpent Shared Data 7
4.1. Data Structure 7
4.2. Description Mechanism 8
4.3. Timing Considerations 8

5. Serpent Model for Dialogue Specification 9
5.1. View Controllers 9
5.2. Threads of Control Within Dialogues 12
5.3. Multiple Views of Data Within Serpent 13
5.4. Timing of Dialogue Actions 13
5.5. Internal Representation 13

6. Dialogue Specification 14
6.1. Display Visualization 14
6.2. Object Attributes 17
6.3. View-controller Template Specification 18

" 7. Summary 19

IAccession ForjZII
NTS GRA&_

IC TAB

Jua t if lcation__

Distribution/

P1 CTrf) Availability Codri'2

CD2st 3 S3eOlCM/EI8-T-

II CMU/SEI-88-TR-5

List of Figures I

Figure 1: Serpent Dialogue Construction and Use 3
Figure 2: Serpent Data Flow 4
Figure 3: Application Example 5
Figure 4: Initial Display 15
Figure 5: Display After Some Modification 16
Figure 6: Object Editor 18

II

~~1

CMUISEI-88-TR-5 IIl

Introduction to the Serpentm User Interface Management System

Abstract: Serpent is an example of the class of systems known as User Interface Manage-
ment System (UIMS). It uses the X window system to Interact with the end user, and is
useful both as a portion of a production system and as a separate prototyping tool. Serpent
supports the development and execution of the user interface of a system. It provides an
editor with which to specify the user interface and a run-time system which communicates
with the application to get the data to display. The system then uses the specification
previously output from the editor to decide how to display that data. This report provides a
technical overview of Serpent, its components, the module used In specifying the user
Interface, and the editor used in constructing the user Interface.

1. Serpent Overview
Serpent (Software Engineering Rapid Prototyping ENvironmenT) is a system being constructed at the
Software Engineering Institute. Serpent will allow the rapid modification of the user interface of an
application. it is an example of the class of systems called User Interface Management System

j "(UIMS). These systems are intended to encourage the separation of an application system into a
functional portion and a user interface portion, and simultaneously to provide a tool with which to
manipulate the user interface portion.

This document introduces concepts behind UIMSs and provides a technical overview of the way in
which Serpent treats several of the Issues related to UIMSs. It is Intended for the technically-
knowledgeable reader who is Interested in a high-level overview of Serpent. In particular, the follow-

ing issues are discussed in some detail:

* Interface between Serpent and both the presentation layer and the application
* Model used within Serpent to specify dialogues

- * Editor used within Serpent for dialogue specification

The last three sections of this document address the preceding issues. As background for those
sections, the two sections that follow discuss briefly the concepts behind UIMSs, the use of Serpent
and the flow of control within a system using Serpent.

2. Roles Involved In the Use of Serpent
The purpose of a UIMS, such as Serpent, is to enable the abstraction of information relative to the
user interface of an application system, and consequently, to enable the structuring of an application
system In a manner which will simplify subsequent modifications to the user interface. The structure
of a UIMS becomes evident through an examination of the roles involved in developing and executing
the user interface. This structure is examined here in the context of Serpent.

The user interface of an application system is the means by which the system communicates to the
end user. This communication is both out of the system to the end user and out of the end user to
the system. Serpent is designed around the concept that the content of the information communi-
cated to and from the end user is distinct from the form of the information. The functional portion of

0

the application system Is concerned with the content of the information and only the user Interface
portion should be concerned with the form.

This distinction between form and content leads to multiple roles both during the design process and
during the execution of the resulting system. During the design process, system designers make
fundamental decisions about the content of the information communicated to and from the end user.
Decisions must also be made about which tasks belong to the functional portion of the application
and which tasks belong to the user interface. Those tasks which generate information (regardless of
the form) which is to be communicated to the end user belong in the functional portion, and those
tasks which are concerned with the form of the Information belong on the user interface side. For
example, the functional portion of the application should not be concerned with the language under-
stood by the end user. Dependence on English should be a portion of the user interface.

Once the content of the information is known, then decisions about the structure of the information
can be made. These structural decisions about the content of the information available to the end
user form the basis of the interface between the functional portion of the application system and the
Serpent or user-interface portion. The interface between the functional portion of the application
system and Serpent is called application shared data, described in Section 3 of this report. 4

Subsequent to definition of the application shared data the user-interface designer or specifier can
begin using Serpent. In concept, these are two separate roles (user-interface designer and user-
interface specifier) but one result of using Serpent is that user-interface design can occur during
specification. 4

The user-interface specifier interacts with the Serpent editor to produce the user interface for the
application. This is called a dialogue. The top portion of Figure 1 shows this interaction.

The designer of the functional portion of the application system, using any methods the designer
chooses, completes the design and the implementation of the portion of the application that does not
involve the user interface. The total system is now ready for execution. At execution time, the end
user sees a complete system with a user interface and the functionality of the application.

The separation of the role of application designer from that of Interface designer leads to a system
decomposition that has the application as one portion and the user-interface manager as another
portion. Serpent plays the role of user-interface manager; Serpent Itself can be decomposed also.
Serpent has two main portions: The dialogue manager handles the logic of the dialogue and the X
window/toolkit system handles both the details of presenting the information to the end user and
gathering the end-user interactions with the system. The bottom portion of Figure 1 shows the end
user Interacting with the X toolkit portion of Serpent, the dialogue controlling the action of the Serpent
run-time system (the dialogue manager) and the application. Application, as used in the remainder of
this report, means the portion of the system that does not Involve the user interface.

2 CMU/SEI-88-TR-5

L __ _____ ___-

j

DIALOGUE SPECIFICATION

OR CONSTRUCTION

End USer

DIALOGUE USE

Figure 1: Serpent Dialogue Construction and Use

2.1. Data Flow
Once the application begins executing, data flows through the system as shown in Figure 2. The
application places data to be displayed to the end user into Serpent application shared data. The
dialogue manager processes the application shared data; the resulting data is shared with the X
window/toolkit system. This data Is displayed to the end user who interacts with the X window/toolkit
until an Input is complete and intervention of the dialogue is required. At that time, the X layer places
the necessary Information into the X shared data and the dialogue manager then processes that
Information. Depending upon the dialogue, information is either placed back into the X shared data
for further presentation, maintained in the dialogue until subsequent actions, or placed Into the appli-
cation shared data. In any case, the appropriate components are notified that data is available for

them and the data is then processed.

The preceding data-flow description pertains to data which the end user inputs. The "pplication tself
may have other paths external to Serpent for the arrival of data which are not shown in Figure 2.

CMU/SEI-8-TR-5 3

SERPENT

Syntactic
Dialogue Manager

A L A x ,,,lAL P h X L

P P a 0 0
1 r SD C

a I • ha a
c1 c d a t I

aD a rU a
t D t D .
I a I a

o t d t
a a *an n

I Local t

Figure 2: Serpent Data Flow

Notice that two roles of the dialogue are to transform application data into visible objects on the
display and to transform user actions into application data. Notice also that by making the data
shared between the application and Serpent explicit, it is easier to maintain the separation between
the functionality of the application and the user interface.

2.2. Control Flow
An application system using Serpent is conceived of as three independent processes: the appli-
cation, the dialogue manager and the X window/toolkit. These three processes communicate through
the shared data areas as described In the preceding subsections. When the system Is linked togeth-
er, it Is possible to specify that these three processes are, in fact, to be executed sequentially; how-
ever, Serpent allows for the processes to be independent.

3. Example
The example that follows Illustrates the details of Serpent. The display in Figure 3 Is adapted from a
command and control application. This is the display that the end user of the example sees. The
rectangular boxes on the right and left sides (e.g., GS1, GS2) represent sensor sites that detect
Information regarding site status. The circles In the middle represent correlation centers that collect
Information from all of the sensors. Each sensor site sends its information to both correlation centers;
this explains the duplication of sensor-site boxes on both the right and left sides of the display. The

4 CMU/SEI.88-TR-5
0

I

1 4 IZ 1 RI 1

0 81 1

l THL I
ITHL

| OTS
S

1,41 3oO I I /11 1 3 ZW B 4 1 3 O

CAV

Warner-Robins

Status: Red
Last Message: 14/1205Z
RFO: Electrical Storm
ETRO: 14/1330Z

Figure 3: Application Example

lines represent the communication paths between a particular sensor site and a particular correlation
center.

When a sensor site is determined to .e non-operational, an estimated time to return to operation,
ETRO, is displayed in association with the site. The ETRO is displayed in association with both
occurrences of the sensor site outside of the corresponding boxes. A particular communication line
may not be operational, in which case the ETRO for that line Is displayed over the line and inside the
sensor site box.
The end user may select either one of the sensor site boxes, and a detail window then appears with
more status information about the site. This detail window may be edited to modify the ETRO, the
status, or the reason for failure. Figure 3 shows the result of selecting the WRB sensor. The RFO,
reason for outage, s also displayed in the detail window.

Notice that the ETRO for a particular sensor site is always displayed twice. If the user has selected a
detail window for the sensor site, the site is displayed three times. This notion that the same piece of
information can be displayed multiple times Is called multiple views of data.

When using Serpent, the application assumes that Serpent is a local database manager that man-

CMUISEI-88-TR-5 5

ages the data available to the end user. When this concept Is applied to the sensor-site example
(see Figure 3), the application functionality relates to converting the Information in the local data base
of the application into (and from) the information in the data base available to the end user. In
Serpent, the data base available to the end user from the application Is called application shared
data. Either the application or Serpent can modify the application shared data. If the application
performs the modifications, these are of Interest to Serpent; If Serpent performs the modifications,
Serpent explicitly Informs the application of the changes.

The application that generates the display in Figure 3 maintains a data base of sensor sites, commu-
nication lines, and correlation centers. Each component of the data base has associated status
information (e.g., ETRO). The application communicates this information to Serpent by writing the
information to the application shared data.

Information comes into the application from the user either through Serpent or by direct communi-
cations from another computer. A high level outline of the application program is:

* Initialize connection with Serpent.
* Retrieve data from local data base and put into shared data.
* Notify Serpent that data is available.
* Do until exit.

" Wait for either input from Serpent or message from another site.
" If input from Serpent then

* Get updated information from shared data.
* Verify information.
* Place updated information into local data base.

If message from another site then

* Place new information into local data base.
* Place new information into shared data.
* Notify Serpent that new information is available.

Notice in the preceding program outline that the communication with Serpent consists of putting
application information (about sensor sites and communication lines) Into shared data and then noti-
fying Serpent of new information availability. The application Is not aware of the fact that this infor-
mation is being displayed as a collection of boxes and lines. The application, in the program ex-
ample, is not aware of the user asking for more detailed information about a particular sensor. This is
the essence of the separation of user-interface details from the application program. Notice also that
the application is not informed of end user-actions until the actions have changed into L, a, form
acceptable to shared data, in other words, until the data is ready for application action.

3.1. Serpent Functionality
The role of Serpent in the sensor-site example (see Figure 3) is to:

" Convert the shared data into the representation of rectangles, lines and circles.
" Determine when the end user selects a sensor site and then display the detail window for

that site.

6 CMU/SEI-88-TR-5

Convert tie modified data Into shared data and notify the application of new information,
* whenever the end user modifies the data being presented.

The dialogue specifier uses the Serpent Editor to construct a dialogue specifying Serpent's role. The
dialogue Is bound to the application during Serpent initialization. During run time, Serpent uses the
dialogue to make decisions about the initial presentation, about modifications to that presentation,
and about when to Inform the application of the end user's actions.

4. Serpent Shared Data

From an application perspective, data is sent to and from a data base available to the end user and
maintained by Serpent. This data is referred to as data shared between Serpent and the application.
In fact, application shared data Is not made directly available to the end user but is transformed by the
dialogue. As discussed previously In this document, when Serpent is decomposed into the dialogue
manager and the X window/toolkit, there is another shared-data area for data shared between the
dialogue manager and X. Application shared data Is transformed into X shared data for interaction
with the end user. X shared data is managed in exactly the same fashion as application shared data.

Three elements are involved in shared-data considerations:

1. Data structure
2. Description mechanisms

* 3. Tim ng considerations

4.1. Data Structure
The example application in section 2 of this document is described as placing data into shared data.
Shared data is conceived as a data base of information available to the end user. Shared data can
be described as a collection of tables of data. In terms more familiar to programmers, shared data is
a collection of records with limited data types used for the components. In the example, one possible
structure for some of the data is:

* Sensor site data table

- site abbreviation
* site status
- site full name
- last message
* rio

• etro

Communication line data table

- from sensor site

- to correlation center
9 status
* etro

CMU/SEI-88-TR-5 7

Each table in shared data can be viewed as a collection of rows (tp/es) or as a collection of columns
(fields). When either the application or Serpent creates a new row, t is given a unique Identification
(shared data element id). Each field within a table is typed; valid types are: 32-bit integer, 64-bit real,
fixed length string, unstructured buffer or shared data element id. Having shared-data element ids
within a table allows the dialogue specifier or application designer to build complex data structures
using tables within shared data.

4.2. Description Mechanism
A file external to the dialogue and the application contains the description of the shared data's struc-
ture. The description is in a special-purpose data-declaration language, Shared Data Description
Language (SADDLE), tailored especially for Serpent. This file is preprocessed to produce a
language-specific description of shared data. Preprocessors exist for Ada and C. Thus, if the appli-
cation is written in C, the preprocessor will generate structure definitions which can be included into
the application program. If the application is written in Ada, the preprocessor will generate package
specifications.

4.3. Timing Considerations
Consider the sensor-site example in section 2 (see Figure 3) again. Data describing the status of a
sensor site can originate either from the end user or from another channel of communication and go
into the application. Since shared data has both a writer and a reader, and these two are potentially
independent processes, it is possible for data to be placed Into shared data without the reader neces-
sarily accessing this data immediately. This leads to the following potential timing problem:

1. End user places sensor-site status into application shared data (through actions of the
dialogue)

2. Application places different status for same sensor site into application shared data
3. Application notifies Serpent of information to be processed

With the preceding application sequence, the application overwrites the information that the end user
has entered. More importantly, the application does not have the possibility of retrieving the data
entered by the end user.

To avoid this problem, Serpent uses a transaction model for placing data into shared data. (This
solution was chosen over that of requiring all changes to be made simultaneously.) A transaction
begins when data is to be placed Into shared data: Data then is placed into the transaction and no
reader has access to the new transaction until the transaction is committed.. The transaction can be
either committed (make data available all at one time) or rolled back (abort the modifications and
make no changes to the shared data). Multiple transactions can be active simultaneously.

Transactions have a producer (writer) and a consumer (reader). The writer places requests to create,
modify or delete Items in shared data and the reader Is unaware of any of those requests until the
transaction is committed. When a transaction Is committed the reader is notified of the modifications
to shared data. Since the dialogue manager manages shared data, If the dialogue manager is read-
ing then t can retrieve the data from the transaction and update the shared data base In an atomic
fashion. If the reader is the application, then it is being informed of data which has already been
applied to application shared data. By informing the reader of the actions in the transaction, it then
becomes the reader's responsibility to maintain the information In its own local data area.

8 CMU/SEI-88-TR-5

Collecting updates to shared data into transactions and applying all of the updates simultaneously
p prevents problems with losing updates to shared data. By providing access to the updates, both

Serpent and the application can act upon every update, even if two transactions modify the same
data items.

5. Serpent Model for Dialogue Specification
A Serpent dialogue controls all of the user interface of an application. A dialogue specifier constructs
a dialogue using the Serpent Editor. A Serpent dialogue is totally driven by data placed into the
various shared-data areas, and is an example of the type of model called production. This section
discusses the model that the dialogue specifier uses to construct the dialogue; this section also
discusses how Serpent interprets the dialogue.

5.1. View Controllers
In Serpent, the actual dialogue between the end user and the application is executed in terms of view
controllers. A view controller performs two main functions:

* Mapping specific data in the application shared data into objects on the display with
which the end user can interact

* Controlling, at a high level, the interactions that the end user has with those objects

A dialogue is specified in terms of view controller templates. A template maintains a watch on appli-
cation shared data for specific data conditions. When data that satisfies a watching view controller
template is placed into application shared data, a view controller is created.

The actual view controller has the following functions:

* Tying a particular tuple in shared-data space to the view controller.
* Mapping that data into display objects visible to the end user.
* Performing actions when the end user Interacts with the display objects.
* Maintaining local information.

In general, a view controller template consists of five components:

1. Creation condition for a new view controller
2. Actions on creation of a new view controller
3. List of display objects, each object consisting of a collection of attributes for presen-

tation and of methods to respond to end user actions
4. Actions on destruction of created view controller
5. Nested view controller templates

The following subsections discuss the preceding components in general and in terms of the sensor-
site example.

CMU/SEI-88-TR-5 9

5.1.1. View Controllers As Used In Example
In the sensor-site example in Figure 3, there are two rectangles associated with every sensor site
(one on the right of the screen and one on the left). For each sensor site, there is a specific tuple in

the sensor-site data table within application shared data. This tuple has the information for the
sensor site and a view controller maps that tuple Into the two rectangles.

Even though there Is a separate view controller for each sensor site, there is a single view controller
template from which the view controllers are created. This view controller template specifies the
condition under which a new view controller Is to be created. The created view controller then maps
the particular tuple representing a sensor site Into the rectangles on the display, interprets any selec-
tion of one of these rectangles as the signal to create the detail window view controller, and maintains
some local Information.

A separate view controller also causes the detail window to be displayed for a sensor site when the
end user selects the sensor site. The view controller that controls the selected sensor-site rectangle
is informed when the sensor site is selected, and causes the creation of the detail-window view
controller.

The view-controller template for the sensor site is:

* Creation condition: sensor site abbreviation is not currently displayed
& Objects:

* Left sensor-site button (create command button on left side of display)

* attributes:

- color
* size
• location
- text in rectangle

* method

* select: create view controller that brings up detail box

Right sensor site button (create command button on right side of display)

* attributes:

- color
* size
* location
• text in rectangle

* method

* select: create view controller that brings up detail box.

10 CMU/SEI-88-TR-5
-- I

5.1.2. Creation Condition
A view controller template waits until a specific condition Is satisfied. In the sensor-site example, the
condition is the existence of a new sensor site In application shared data. Once that condition is
satisfied, a view controller is created and performs its actions. The creation condition satisfies two
purposes. First, It determines when a new view controller is created from a view controller template
and second, it associates a tuple from the shared data with the newly created view controller. In the

,_ example, when a new sensor site abbreviation is placed into shared data, a view controller is con-
structed from the template and is associated with the tuple which contains the new sensor site abbre-
viation. If the view controller exists and the tuple with its particular sensor site abbreviation Is deleted,
then the view controller ceases to exist.

In general, a view-controller creation condition may be any condition on the attributes in a single
shared data table modified by any local information maintained within the dialogue. When the con-
dition is satisfied by certain fields of a particular tuple In a table, then the entire tuple is bound to the
view controller. Values other than those participating in the creation condition are typically used for

construction of the attributes of objects.

5.1.3. Actions On Creation
Actions on creation are executed when a view controller is created. These actions can be any of the
valid ways in which the dialogue can manipulate shared data, manipulate local information, or send
Information to the application.

No actions on creation are shown In the sensor-site example, but possible actions might be in-
crementing a count of sensor sites or initializing the flag used to control the display of the detail
window.

5.1.4. Objects
Each view controller template describes a collection of objects that are created when a view controller
is created from the template. These objects correspond to the shapes on the display and are bound
to the newly-created view controller. The objects have attributes that control how they are presented
to the end user, as well as methods that determine the high-level interactions that the end user can
have with the object. All of the objects within a particular view controller are created when the view
controller is created and, thus, the view controller acts as a mechanism for grouping display objects
on the basis of the dialogue's logic.

In the sensor-site example, each view controller creates two objects, the right and left sensor rec-
tangles. The attributes of these objects determine the size, iocation, color and internal text of the
objects. The values of the attributes may depend upon the values of the fields in the sensor-site data
table tuple that caused the view controller's creation.

In general, the values that the attributes take may depend upon values of the fields in a shared data
table or from local information maintained by the dialogue. Several different values can enter into the
calculation of a single attribute. In particular, the values can be drawn from the tuple with which the
view controller is associated, from values local to the dialogue, or from attributes of other objects.
The ability to reference attributes of other objects allows the line objects in Figure 3, for example, to
be specified such that they are connected to the sensor-site objects.

CMU/SEI-88-TR-5 11

The objects also have methods which determine their reaction to end user actions. In the example in
Figure 3, the only action an end user can perform on the sensor-site rectangles Is to select one of
them. The mechanism for the selection is managed by the X toolkit. When the end-user selects a
sensor-site rectangle, the X toolkit notifies the dialogue manager that a selection has occurred for a
paicu/ar objec This object belongs to a particular view controller and, consequently, the particular
tuple associated with that view controller is known. In the example In Figure 3, when a selection
occurs the sensor-site view controller arranges for a detail-window view controller to be created. it
could do this by setting a local flag which the detail window view controller template uses as its
creation condition.

5.1.5. Actions At Destruction
The view controller is deleted from the system and its objects removed from the display when the
creation condition of a view controller becomes false. it is also possible to specify other actions to be
performed upon destruction. None are detailed in the example view controller, but possible actions
might be to decrement a counter of sensor sites or to inform the application of other information.

5.1.6. Nesting of View Controllers
It is possible to specify that one view-controller template be nested within another view-controller
template. This nesting carries through to the actual view controllers created from the templates. A
nested view controller inherits the tuple that caused the creation of its predecessor. In the example,
the detail-window view controller is nested within the sensor-site view controller. Thus, when the
detail-window view controller is created, it inherits the tuple that caused the sensor site view controller
to be created. In other words, the detail-window view controller presents certain information about a
sensor site and the nesting insures that the information is associated with the correct sensor site.
When the sensor-site view controller is destroyed, then all of its nested view controllers, the detail-
window view controller in particular, are also destroyed.

5.2. Threads of Control Within Dialogues
A dialogue Is specified through a collection of view-controller templates. Each of the view controller
templates has a creation condition. The order in which the view controllers are created depends on
the data that the application places into shared data and on the actions of the end user. A sub-
dialogue is a collection of view controllers that perform one particular task, for example, create the
display in Figure 3. it is possible to have multiple sub-dialogues within a dialogue; there are no a
priori timing constraints on the execution order for those sub-dialogues.

Actions of the dialogue are determined by the actions of the application and of the end user, and
multiple sub-dialogues can be active simultaneously. For example, Figure 3 may represent only one
portion of a total display. The end user may select a sensor site and have the detail window dis-
played, leave it displayed and proceed with an unrelated task in a different portion of the display.
Within Serpent, view-controller creation and destruction, as well as methods use, take place com-
pletely in response to end-user and application actions. In particular, several sub-dialogues may be
carried on in parallel. This allowance of simultaneity of sub-dialogues represents the power of the
production model used in Serpent.

12 CMU/SEl-88-TR-5

5.3. Multiple Views of Data Within Serpent
The data shared between the application and Serpent has one tuple for each collection of application
data. The fact that a particular piece of data may be displayed multiple times on a d-play is reflected
only In the dialogue and not In the shared data. In the example, the ETRO for a part' ular sensor site
may be displayed as many as three times. Since the view controllers manage the mapping from
application data to presentation objects, Serpent Is aware of which view controllers depend upon
which values of shared data. Thus, when a particular piece of shared data is modified, Serpent is
able to ensure consistency with all of the presentations of that particular piece of shared data.

5.4. Timing of Dialogue Actions
View-controller templates monitor the application shared data area and local dialogue information.
Additionally, the templates create view controllers when their creation conditions have been satisfied.
Also, when there are changes In the data upon which the objects depend, the new values of the
attributes of the objects are recomputed and the object is redisplayed. The arrival of a transaction
triggers this activity. Since a transaction may contain modifications to anything in shared data, it is
possible for multiple view controllers to be created and attributes of objects to change, all in response
to a single transaction. Within the responses to a single transaction, it is also possible for the actions
of view controllers to modify data which affect other view controllers. From the perspective of the
dialogue specifier, actions In response to a transaction are all simultaneous and, yet, the dialogue
manager performs these actions sequentially. Consequently, the timing of the actions of view con-
trollers becomes important.

As long as there is no interaction among the view controllers affected by a transaction, Serpent's
actions are equivalent to sequencing through the view-controller templates and active view con-
trollers, and performing all of the actions indicated. The model used, however, has a combined data
space consisting of shared data and local data. The creation conditions, the actions and the attribute
calculations all treat this data space identically. This allows important functionality, such as, in the
example In Figure 3, counting the number of sensor sites and varying the display based on the
number of sites exposed to the end user. However, such a treatment of the combined data space
creates problems of potential interaction between view controllers. Serpent performs its actions in a
fixed order: Their behavior is repeatable, but the correctness of the dialogue is the responsibility of
the dialogue specifier.

5.5. Internal Representation
The dialogue Is specified in terms of view controller templates. The templates maintain an asym-
metrical view of the application shared data. That is, view controllers map application shared data
into objects which are to be represented on the display. At a deeper level, however, there really is no

asymmetry. The actions of X window/toolkit are translated Into X window/toolkit shared data and the
dialogue manager is informed of these actions through the same transaction mechanism that the
application uses to modify application shared data.1

'Sin= lils level of Serpem is not visible lo t dialogupe ecwr, it i only mentioned briefly in tis report. The interested
reader i grefto the sem documan for thorough dscussion of the deoompositlon and the prodicon system used
in Swpent

CMU/SEI-88-TR-5 13

For this reason, the editor decomposes view controllers into productions. Each production has a
condition that causes it to fire; each production also has actions that are executed when the produc- q
tion Is fired. The productions operate from a data space and modify the same data space. Therefore,
the timing considerations of view controllers also apply to productions.

6. Dialogue Specification
The specification of dialogue Is an important aspect of Serpent, because it controls the level of so- -

phistication that the dialogue specifier requires. This section gives an overview of the specification
process.

A dialogue Is specified through interactions with the Serpent editor. A dialogue has two portions: (1)
the displays that the end user sees and uses for Interaction, and (2) the logic that determines which
display Is visible at any Instant and controls the Interactions with the application. The editor has
graphic facilities to specify the components of the display and textual facilities to specifY the logic. An
Important aspect of the process of specifying a dialogue is that whichever Is currently the most natural
portion of the specification can be worked on at any point in the process. The logic of the dialogue
can be specified without regard for the particular displays to be visible and connected with the dis-
plays at a later time. Likewise, the visible portion of the dialogue can be specified without regard for
the logic and then connected at a later time. Both portions must be specified for a dialogue to
execute, but the Serpent editor does not prejudge the order of specification.

The conceptual model that the dialogue specifier must have is that a display is composed of objects,_
and that the types of objects that compose a display must be of the object types that Serpent sup-
ports. Each object has a collection of attributes which determine its appearance. The existing view
controllers consist of a collection of objects, and a display is a collection of view controllers. At
specification time, there are only view-controller templates, not view controllers, and the person who
specifies the dialogue must be aware of that distinction.

The conceptual model leads into how to interact with the editor. One portion of the interaction deals
with the visualization of a display, another portion deals with the objects and their attributes, and a
third portion deals with the view-controller templates. Each portion has its own abilities to control how
the other portions behave. For example, the position attribute of an object can be modified either
through explicit modification of the attribute or through movement of the object on the display visuali-
zation. The portions of the editor are described in more detail in the subsections that follow.

6.1. Display Visualization
This portion of the editor allows the dialogue specifier to see what a display would look like during
execution. it gives a visual presentation of a collection of objects and allows the modification of the
geometric aspects of these objects (size and position).

14 CMU/SEI-88-TR-5

6.1.1. Construction

IboxI

0
View Controllers

Displayed

I
Figure 4: Initial Display

The dialogue specifier is provided a palette of objects with which to construct a planned display.
* Figure 4 displays the initial portion of the display. The blank window is the target for the construction

of the display to be visualized. The specifier chooses elements of the palette and specifies where on
the planned display they are to be placed. The specifier also specifies the size of the resulting
element. The specification is done using cursor position. Once positioned, the specifier can move or
resize objects. Figure 5 displays the desired display after the specifier has entered a command
button and a portion of the line connecting the command button with another object.

A number of commands are available to assist in the construction of the planned display. These
commands assist in specifying the geometry of the display and in creating objects for the display.
These Include commands such as:

SAlign. Require the x (or y) position of two objects to be the same.
* Copy. Make second distinct copy of object.
• Connect. Require two objects to be connected.
* Group. Specify that two (or more) objects are displayed and positioned relative to each

other.

CMUISEI-4-TR-5 15

i ~~ - -. . dialogue

0

View Controllers
Displayed

unattached

Figure 5: Display After Some Modification

6.1.2. Connection With View Controllers
For completely specified dialogues, objects are associated with view-controller templates. This asso-
ciation can be made either by creating an object as belonging to a particular view controller template,
or by associating the object to a view controller template after the object has been created. When an
object is created it is associated with a special view controller template given the name unattached.
An object may be moved from one view controller template to another, and thus moved from the
unattached view controller template to the desired view-controller template.

6.1.3. Viewing Display
The target window onto which the objects are moved is composed of all of the objects from a list of
view-controller templates. View controller templates can be added and deleted from this list and their
objects will appear or disappear accordingly from the visualization display. This allows the dialogue
specifier to mimic manually the logic of the display and visually Inspect the results of having specific
view controllers exist at some point in the dialogue. It also allows the partitioning of the objects into
view controller templates. Thus, viewing a particular display contributes to the understanding o how
the conceptual structure of a display maps Into the view controller templates and Into the associated
objects.

16 CMU/SEI-88-TR-5

I, ,I

6.1 A. Connection With Attributes
Each visible object can have its attributes modified directly (see Object Attributes section below).
Some attributes can also be modified through the visualization display. These attributes are primarily
geometric. It is possible to manipulate directly the size and location of an object, as well as the
relation between objects.

6.1.5. Choice of Values
When an object is displayed in the visualization display, It must have values for all of its attributes.
Some of these attributes are specified as constants that are easy to assign to the object. Others,
however, are specified as depending upon values from shared data, and these values are not avail-
able while the dialogue is being specified. Associated with the actual calculation of attributes of
objects is a display value which must be a constant and which determines how that attribute is to be
assigned during editing. If the display attribute is not given a value, the Serpent editor chooses a
value for the purposes of display.

6.1.6. Size of Visualization Display
Objects displayed in the visualization display are shown at actual scale. Typically, there is not
enough space on the terminal screen to display the whole scene. The dialogue specifier can set (or
change) the size of the window within which the visualization scene is displayed. The specifier can
then scroll up and down, as well as left and right, to display any portion of the scene.

6.2. Object Attributes
*J Each object has a collection of attributes that the dialogue specifier can set. The setting can be

constant or vary for the whole dialogue, depending upon the state of the dialogue and the values of
shared data. If the setting varies, then it is defined by an expression in the dialogue editor language.

When an object Is created it is assigned a system-constructed name. The dialogue specifier can
modify that name at any time and the object is referenced by means of that name. Generally, the

i* name given should be related to the function of the object. Nonetheless, by having an initial system-
defined name, the actual assignment of the name can be deferred until the workings of the dialogue
have been more carefully defined.

An object can have its attributes available for editing through selection from the visualization display,
through specification of the edit object from the view-controller template, or through specification of
the edit object by name function.

Every object has available a textual-based editor with which to specify the attributes. Figure 6 is an
example of that type of editor. Some object types have a specialized graphical editor that uses dials,
menus, and so forth, to do the specification. The choice of how to modify an attnbute is strictly a
matter of convenience; the form of the modification does not affect the result.

CMU/SEI-88-TR-5 17

J
pi

Sample - Widget

Belongs to: SampleVC

Class: Label-Widget

X_Position 50

Y_Position 100

Label "X Term #3"

Height Must be expanded

Width 1.1 * Internal Height

Figure 6: Object Editor

6.3. View-controller Template Specification
Another specialized type of editing function available within the Serpent editor is the editing of view-
controller templates. This function can be invoked from the objects on the visualization display (each
object belongs to a view-controller template), from a nested or parent view-controller template being
edited, or by name from the edit view controller function. The system gives an external name to each
view-controller template when the template is created. The name can be modified by the person
specifying the dialogue at any point in the dialogue construction and the view controller template can
always be referred to by its current name.

View-controller templates have five components: creation conditions, creation actions, possibly
nested view controller templates, objects and destruction actions.

The main mechanism for editing view controllers is a textual-based form shown in Figure 6. Each
component is entered textually, with the possible exception of objects and nested view controllers.
Mouse actions and nested view controllers can associate objects with view-controller templates.
Some view-controller templates refer to a particular shared-data definition. Within the Serpent editor
t is possible to view the shared-data definition upon which the dialogue is based. It is not possible,
through the Serpent editor, to modify the shared data definition.

18 CMU/SEI-88-TR-5

I -.

7. Summary
Serpent Is a system which allows an application to be decomposed into a user interface portion and a
functional portion. The separation between the form of the presentation and the function of an appli-
cation is an important and powerful idea which simplifies subsequent modifications to the presen-
tation. To accomplish this separation, it is necessary to define both a model to describe the user
interface and a software architecture which has a separable user interface. This document described
the model Serpent uses to describe the user interface and presented the software architecture
needed to use Serpent in an application. It also gave an overview of how to specify a dialogue within
Serpent.

I1

CMUISEI-88-TR-5 19

r 4-

.4

I

*

0

* -4

* A

20 CMU/SEI-88-TR-5

